Cardiovascular Complications in COVID SARAH CICCOTTO, MD, FACC

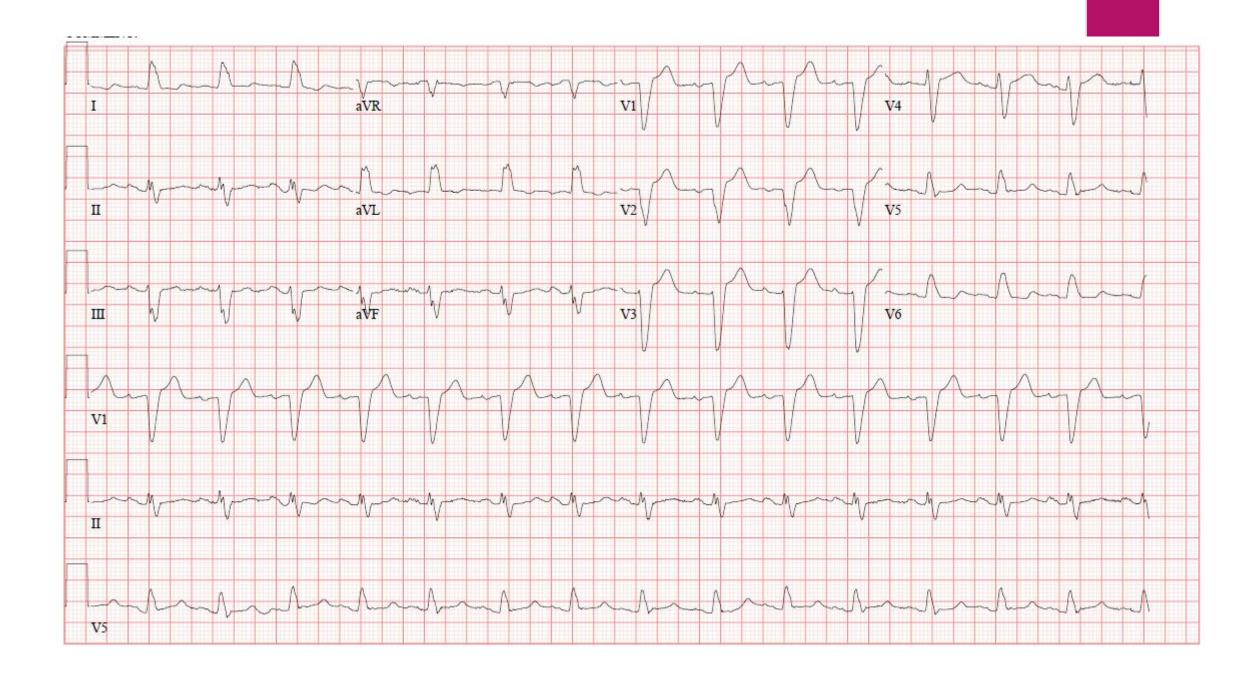
SEPTEMBER 9, 2020

Goals

- COVID and cardiovascular disease pathophysiology as best we know
- Cardiovascular effects
 - Role of troponin/BNP measurement
 - ACS
 - Thrombosis
 - Heart failure
 - Myocarditis
 - ► Long-term effects myocardial fibrosis? JAMA Article, cMRI in recovered patients
- Role of RAAS inhibitors
- Role of statins

SARS-CoV-2

- Single-stranded RNS coronavirus
- Enters human cells by binding ACE2
 - Highly expressed in lung alveolar cells, cardiac myocytes, and vascular endothelium, and other organs
- ► As of September 7th, United States:
 - ▶ 6,261,216 total cases
 - ▶ 188,513 deaths
 - > 288,860 cases in the last 7 days
- North Carolina: 10th in the US
 - ▶ 177,919 lab confirmed cases
 - ▶ 2.897 deaths
 - ▶ 765 currently hospitalized


COVID and Cardiovascular Pathophysiology

- SARS-CoV-2 can cause injury to most organ systems
 - 20-30% of hospitalized patients have cardiac injury, up to 55% of patient with preexisting CV disease
- ACE2 is the binding site -for SARS-CoV-2
- Proposed pathophysiology:
 - Inflammatory plaque rupture
 - Stent thrombosis
 - Infection via the ACE2 receptors, causing systemic endothelitis
- Fulminant myocarditis is suspected in 7% of patients with lethal outcome¹
- Although, no study to date has established a direct mechanism of cardiac cell injury by the virus

Patient LE

- 78 year-old female presented to the ED feeling poorly, cough, increased shortness of breath, chest tightness for 3 days prior
- Acute on chronic hypoxic respiratory failure on arrival, required high-flow
- PMH: severe COPD, OSA on CPAP, generalized anxiety, tobacco use, hypertension, hyperlipidemia, chronic LBBB, CAD s/p PCI to the <u>LM in 2012</u> and more recently PCI to the <u>proximal LAD in</u> <u>2018</u>, and ischemic cardiomyopathy

- Initial Labs: mild renal dysfunction (Cr 1.2). Normal LFTs, troponin 0.06. BNP 285. WBC 18, nl Hgb and Plts
- ► + COVID
- ► EKG: NSR with LBBB
- CXR: Diffuse infiltrates throughout both lungs which have developed since the prior study

Patient LE

- ▶ Troponin increased to 4.9
- Increasing chest pain and non-productive cough
- Worsening respiratory failure, transitioned to BiPAP overnight

Cardiac Markers in COVID

- <u>Troponin</u> is commonly elevated in COVID patients, poor prognostic sign, although it does not necessary indicate MI or other cardiac injury
- Troponin significantly elevated in more than half the patients that died
- Increased troponin well-established in acute infection, related to inflammation, prothrombotic and procoagulant state
- Rise and fall of troponin is common among patients with acute respiratory infections and correlates with disease severity
- Only measure troponin if diagnosis of AMI is being considered on clinical grounds

- <u>BNP</u> is commonly elevated in COVID, but does not necessarily indicate new onset heart failure
 - Elevated in setting of myocardial stress
 - Frequently elevated in severe respiratory illness in the absence of elevated filling pressures
 - Should not necessarily trigger evaluation or treatment for heart failure unless clinically evident
 - Associated with unfavorable outcomes

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

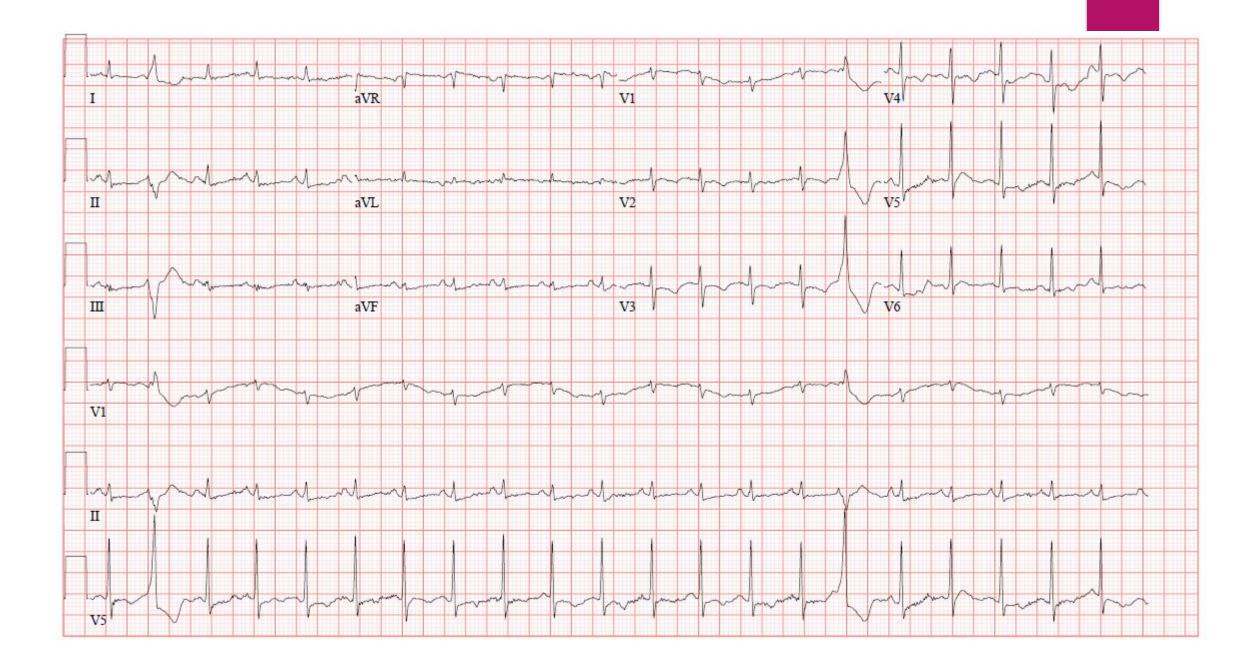
Fei Zhou*, Ting Yu*, Ronghui Du*, Guohui Fan*, Ying Liu*, Zhibo Liu*, Jie Xiang*, Yeming Wang, Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li, Xudong Wu, Jiuyang Xu, Shengjin Tu, Yi Zhang, Hua Chen, Bin Cao Incidence of Myocardial Injury in COVID

Cardiac Troponin for Assessment of Myocardial Injury in COVID-19

Acute Coronary Syndrome

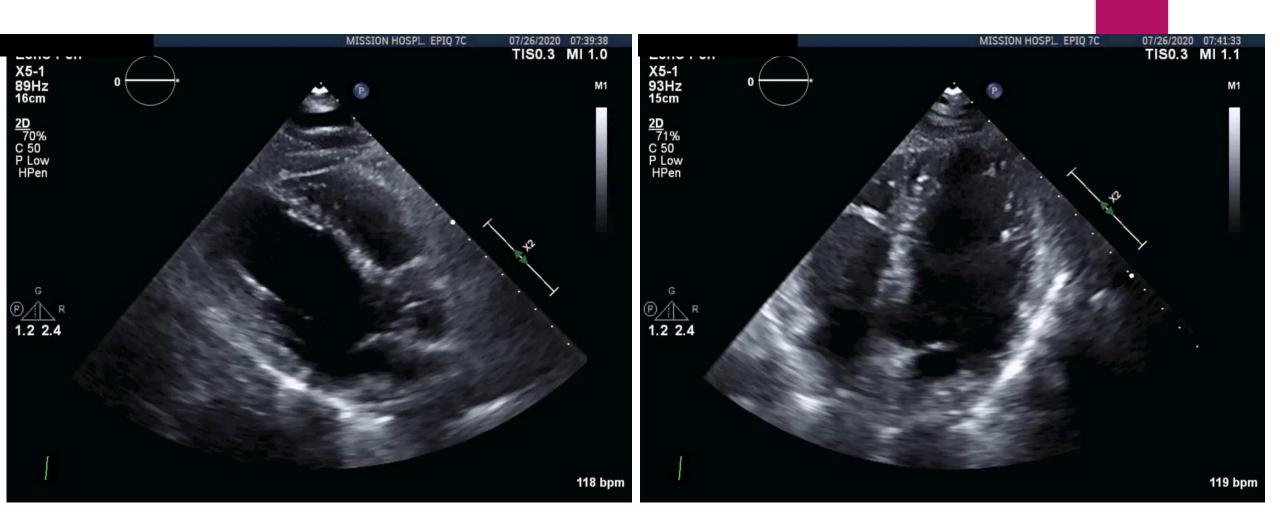
- Theoretical increased risk of acute plaque rupture due to inflammatory response and increased procoagulant and prothrombotic activity
 - Described in influenza infection
- No reported increased in type I MI in COVID patients
- In fact, reduction in STEMI frequency --- although likely due to patient's hesitant to seek care
- Type II MI due to supply/demand mismatch
 - Need evidence of myocardial injury

Thrombosis


- SARS-CoV-2 activates the coagulation pathway and endothelial dysfunction
- P-Dimer > 1000 ng/mL associated with poor prognosis
- COVID may predispose to arterial and venous thrombosis
- Mechanism not fully understood
 - Cytokine release
 - Critical illness/underlying risk factors/immobility
 - DIC
- ** Many other acute infections or inflammatory diseases associated with increased thrombotic events
- VTE PPX is recommended will hospitalized

- Post-hospital VTE PPX in patients with COVID?²
 - Rates of VTE similar for COVID as for all patients with a medical hospital discharge
 - 9/1877 COVID patients with VTE within 42 days of discharge (4.8 per 10000 discharges)
 - ▶ 56/18159 (3.1 per 1000 discharges)

Patient MC


- ► 62 year-old female
- Prior stroke, epilepsy, COPD, depression
- Several family members had recently tested + COVID
- She had presented to the ED 5 days prior to diarrhea and weakness. CT with possible ileus, but infiltrate in lower lobes, concerning for PNA. Normal labs with exception of WBC 16
- Presented back to the ED with hypoxic respiratory failure and altered mental status via EMS.

- Initial lab work: normal BMP, mildly elevated LFTs (ALT 17, AST 44, Alk phos 156, t bili 4.6). Ferritin 14655. WBC 21.7, Hgb 7.6, Plts 511. INR 1.9 (not on anticoagulation)
- Troponin 0.06. BNP 32
- COVID +
- CT A chest: no PE, mild peripheral bibasilar infiltrates, "not typical appearance of COVID pneumonia"

Patient MC

- Rapid deterioration overnight
- Hgb dropped to 4.0
- Worsening respiratory failure, transferred to ICU, intubated
- Shock, with rapidly increasing vasopressor requirements
- Oliguric renal failure
- Negative EGD
- Hematology: "Her anemia and coagulopathy are very unusual and do not appear to fit into any classic presentations"
- Echocardiogram the following morning: severe biventricular failure, no significant valvular disease. No pericardial effusion

Cardiomyopathy and Heart Failure

- Cardiac dysfunction is common in patient hospitalized with severe COVID, can be seen in up to 1/3rd of critically ill patients
 - SARS-CoV-2 myocarditis (proposed mechanism due to direct viral infection)
 - ► Systemic inflammation, cytokine release → Microvascular dysfunction/thrombosis
 - Tachycardia-induced
 - Stress-induced (Takotsubo)

Management:

- Mainstay is supportive care, as there is no data to guide optimal management specific to COVID patients with cardiomyopathy
- Consider PA catheter, for refractory shock
- Point-of-care echo
- ► ECWOS

ECMO Basics

VV ECMO - oxygenates

VA ECMO – oxygenates and pumps

ECMO in COVID

- Significant resource utilization
- General consensus: consider in younger patients, minor or no comorbidities.
 - VA ECMO for refractory shock (SBP < 90 mmHg, CI < 2.2 L/min/m2) while receiving > 0.5 mcg/kg/min norepi or > 20 mcg/kg/min dobutamine
- Absolute contraindications:
 - Advanced age (>60 yo)
 - Severe multiorgan failure (renal failure is not an exclusion)
 - ▶ Significant underlying comorbidities
 - Uncontrolled bleeding or contraindications for anticoagulation
 - Inability to accept blood products
 - Severe neurologic injury or advanced dementia
 - Mechanical ventilation > 10 days
 - Ongoing CPR
 - Clinical frailty scale ≥ 3
- Thrombosis is a major concern, although no data yet

VA ECMO in COVID: Outcomes?

- Some propose that VA ECMO can improve outcomes, as it facilitates reduction of IL-6 (increased IL-6 associated with fatal outcomes) by bypassing the lungs – although not proven
- VA ECMO associated with more complications (mainly hemorrhage) compared to VV ECMO
- According to ELOS: 40% predicted survival to discharge on VA ECMO, 58% on VV ECMO – limited data

Myocarditis

- Unclear if there is injury directly from viral infection of the myocardium or indirectly from complications
- Several case reports of acute myocardial inflammation, scant pathologic data
- One post-mortem pathologic study 50 year-old Chinese male with COVID died from cardiac arrest – significant lung damage, no substantial myocardial damage (outside of few interstitial mononuclear inflammatory infiltrates)¹
- First direct evidence of myocardial inflammation by endomyocardial biopsy in June – diffuse T-lymphocytic inflammatory infiltrates, edema, focal necrosis. No SARS-CoV-2 genome detected in myocardium²
- First report of myocardial localization of SAR-CoV-2 in Italy. 69 year old male with acute respiratory failure, cardiogenic shock. Biopsy with low-grade myocardial inflammation and viral particles in the myocardium. Survived after 5 days on ECMO³

1.Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. *Lancet Respir Me* 2020 2. Sala S. Acute myocarditis presenting as a reverse Takotsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eu Heart. 2020;41

July 27, 2020

Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases

Diana Lindner, PhD^{1,2}; Antonia Fitzek, MD³; Hanna Bräuninger, MS^{1,2}; <u>et al</u>

- 39 autopsy cases of patients with COVID whom pneumonia was the clinical cause of death
- Histopathologic evaluation did not meet criteria for acute myocarditis
- There was evidence of virus present in the heart in 24/39 patients (61.5%)
 - ▶ 41% with significant viral load (> 1000 copies per ug RNA)
- Virus was found in the interstitial cells or macrophages infiltrating the tissue and not the myocyte itself.
- Conclusions: Overt myocarditis was not observed in the acute phase, but long term consequences may be an issue...

JAMA Cardiology | Original Investigation

Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19)

Valentina O. Puntmann, MD, PhD; M. Ludovica Carerj, MD; Imke Wieters, MD; Masia Fahim; Christophe Arendt, MD; Jedrzej Hoffmann, MD; Anastasia Shchendrygina, MD, PhD; Felicitas Escher, MD; Mariuca Vasa-Nicotera, MD; Andreas M. Zeiher, MD; Maria Vehreschild, MD; Eike Nagel, MD

- Evaluate presence of myocardial injury in unselected patients recently recovered from COVID
- 100 patients from University Hospital Frankfurt, between April-June v healthy controls
 - ▶ 53% male, average age 49
 - ▶ 33% required hospitalization
 - 71 % had elevated high-sensitivity troponin at time of cMRI

- Results:
 - COVID group:
 - Lower LVEF
 - Higher LV volumes
 - Raised native TI and T2
 - 78% had abnormal cMRI findings
 - Raised myocardial native T1 (73)
 - ▶ Raised T2 (60)
 - ▶ LGE (32)
 - Pericardial involvement (22)
 - Small but significant difference between home v hospital in T1 (p = 0.008)
 - Endomyocardial biopsy at in pts with severe findings revealed active lymphocytic inflammation

Published online July 27, 2020. Corrected on August 25, 2020.

F, Representative cardiac magnetic resonance images of an adult woman with COVID-19-related perimyocarditis. Panels C and D show significantly raised native T1 and native T2 in myocardial mapping acquisitions. Panels E and F show pericardial effusion and enhancement (yellow arrowheads) and epicardial and intramyocardial

enhancement (white arrowheads) in late gadolinium enhancement (LGE) acquisition.

Discussion

- 78% of COVID patients had an cMRI abnormality. The most prevalent abnormality was abnormal T1 and T2 measurements (60%)
 - Increased T1 represents diffuse myocardial fibrosis/edema
 - T2 is specific for edema
 - Increased T1 and T2 = active inflammatory process
 - Increased T1 + normal T2 = usually healed inflammatory process
 - ▶ There are many factors that can increase T1 age, hypertension, diabetes, autoimmune disease
- Participants with a relative paucity of preexisting cardiovascular conditions and with mostly home-based recovery had frequent cardiac inflammatory involvement. Similar to the hospitalized group"
- "Unlike previous studies, out findings reveal that significant cardiac involvement occurs independently of severity of original presentation and persists beyond the period of acute presentation"

Publicity/Criticism

C Don't COVID-19 Can Wreck Your Heart, C Even if You Haven't Had Any irus)-NFL Star Cameron Smith Says He Needs Open-Heart Surgery After Positive Coronavirus Test

seaso coronavirus

overshadowed-the heart.

- Significant media attention, cited as reason to cancel college sports
- ▶ 600,000+ views, Altmetric score 10,000
- Numbers in initial results table are mathematically impossible, raising concern about integrity of the data as a whole
 - Interquartile ranges were incorrect
 - Revised data number of controls with abnormal T1 findings doubled
 - Table 1 p values were correlating COVID patient with healthy controls, not with risk factor-matched controls many endpoints would no longer be significant
- Correction letter published 8/25/20 "errors in statistical numbers and data" although they state the conclusions still stand
- Many argue that some of the differences on cMRI are caused by the risk factors, not by COVID
- ▶ There are likely cMRI abnormalities after many viral infections.
- Did not correlate with clinical myocarditis

RAAS inhibition in COVID

- BRACE CORONA Trial, presented at ECS Congress last week
- Suspending ACE/ARBs did not show clinical benefit in patients hospitalized with mild-to-severe COVID
- 659 patients chronically using ACE or ARBs from 29 sites in Brazil
 - Patients using >3 antihypertensives, Entresto, or hemodynamically unstable at presentation were excluded
- Primary endpoint: # of days alive and out of the hospital at 30 days

Results:

- Average number of days alive and out of the hospital was 21.9 for patients who stopped ACE/ARBs compared to 22.9 days for those who continued meds (p = 0.09)
- Patients alive and out of hospital by the end of 30 days 91.8% in suspended group v 95% in continued group
- 30-day mortality: 2.7% in suspended group v 2.8% in continued

Conclusions: Continue ACE/ARB and likely ARNI if hemodynamically stable

Statins in COVID

- Some observational studies suggest that statin therapy is associated with reduction in various CV outcomes among hospitalized patients with influenza and/or pna given anti-inflammatory effects
- Currently, no RCT or observational evidence to support starting statins as part of treatment of acute viral illnesses
- Importantly, statins do not appear to be harmful
- Current guidelines advise continuing statins, unless concern for severe rhabdomyolysis

Patient LE

- Chest pain, shortness of breath, worsening hypoxic respiratory failure
- Exam: Appeared in moderate distress. Tachypneic, bibasilar crackles. Tachycardic, no significant murmurs. No JVD. No peripheral edema
- On further discussion, chest pain occurred with coughing
- Recommended against further cardiac evaluation, her clinical presentation consistent with severe COVID pna and type II MI
- Treated with heparin gtt, dexamethasone, convalescent plasma, and remdesivir
- Never required intubation
- Discharged 11 days later back to Givens on home O2

Patient MC

- Refractory mixed shock
- Initial stabilized with addition of dobutamine
- Started on CRRT
- Not a candidate for ECMO given anemia and coagulopathy
- Passed away on hospital day 4

Conclusions

- Like many viral illness, SARS-CoV-2, likely attributes to significant cardiovascular complications, which are associated with poorer outcomes
- The full scope of cardiovascular involvement is not fully realized, although a lot of preliminary data from small studies raising concern for significant morbidity